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Abstract The cytotoxicity of a series of ionic liquids

containing ammonium, pyrrolidinium, imidazolium, pyrid-

inium, and piperidinium cations against leukemia rat cell

line IPC-81 was estimated from their structural parameters

using quantitative structure–activity relationship methodol-

ogy. Linear and nonlinear models were developed using

genetic algorithm multiple linear regression and multilayer

perceptron neural network approaches. Robustness and

reliability of the constructed models were evaluated by

internal, external, and Y-randomization procedures. Fur-

thermore, the chemical applicability domain was determined

via a leverage approach for each model. The results of this

study revealed that the contribution of structural character-

istics of the anionic parts of the studied ILs were fewer than

of the cationic parts.

Keywords Cytotoxicity � Multiple linear regression �
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Introduction

An ionic liquid (IL) is a salt with a melting temperature

below the boiling point of water [1]. Typical ILs consist of

an organic cation with delocalized charges and a small

inorganic anion such as Cl, BF4, or PF6, which is weakly

coordinated to the organic cation. Ionic liquids are not a

new class of materials, but they do have a set of physical

properties that has sparked increased attention in recent

years. The expanding interest in ionic liquids refers to their

ability to be used in diverse applications such as sensors,

fuel cells, batteries, capacitors, ionogels, extractants, and

solvents in analysis, synthesis, catalysis, and separation

[2, 3]. Due to their salt-like structures, ionic liquids usually

exhibit a negligible vapor pressure up to very high tem-

peratures for which they are often known as ‘‘green

solvents’’ [4]. In spite of all the advantages of ILs, it should

be noted that continued development and further use of

these compounds may lead to accidental discharge and

contamination. Although ILs can lessen the risk of air

pollution due to their low vapor pressure, they do have

significant solubility [5] as well as high stability [6] in

water. As a result, this is the most likely medium through

which ILs will be released into the environment.

To date, some studies have investigated the toxicity of ILs

on human or rat cell lines [7, 8], which have revealed that

there are some ionic liquids with low to high hazard potential

for humans and the environment. According to these results,

the ‘‘greenness’’ of ionic liquids strongly depends on their

substructures (e.g., head group or side chain of the cation).

Therefore, having information about the biochemical

activity of ionic liquids based on their structures before

putting them into wide use will provide a good insight into

their environmental effects. Although in vivo or in vitro risk

assessments have nowadays significantly improved, these

methods are very time consuming. Besides this fact, they are

not cost effective and do not respond to the large numbers of

different chemicals.

As a good alternative, quantitative structure–activity/

property relationships (QSAR/QSPR) have been success-

fully established. These approaches provide information

that is useful for molecular design and medicinal chemistry

[9]. The QSAR/QSPR models are mathematical equations

which relate chemical structure of compounds to a wide
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variety of their physical, chemical, biological, and tech-

nological properties and activities. The main task of

QSAR/QSPR is to obtain a reliable statistical model for the

prediction of activities/properties of new chemical sub-

stances and analytical systems. These relationships also

take an approach to the identification and isolation of the

most important structural descriptors that affect physico-

chemical properties. Nowadays, QSAR/QSPR models are

rapidly developing and have been widely used by chemists

for predicting different chemical and physical properties of

different types of molecules. In the case of toxicological

studies, successful QSAR investigations can be found in

the literature; for example, Nowaczyk and Modzelewska-

Banachiewicz [10] described the activity of fungicide

agents containing a quinazolinone ring using the QSAR

approach. Their models displayed good fits with the

experimental in vitro data, with correlation coefficients of

0.923 and 0.854 for the activity against yeast and fila-

mentous fungi, respectively. In other work, Gosav et al.

[11] estimated the toxicity of novel amphetamines using

neural networks (NNs) and their constitutional character-

istics. In the case of ionic liquids, there are many QSPR

studies on the correlation or prediction of their physical

properties, such as melting point [12], viscosity [13],

conductivity [13], molar volumes [14], and density [14,

15], while less attention has been paid to their toxicity.

Only recently, Torrecilla et al. [16] have estimated the

toxicity of a series of ionic liquids using their empirical

formulas (elemental composition) and molecular weights

as descriptors. This attempt resulted in linear and nonlinear

models which were analyzed by statistical parameters,

analysis of residuals, and statistical dispersion tests. The

successful development of such models will help to

understand the relationship between ionic liquids structure

and their toxicity. As a cellular test system, promyelocytic

leukemia rat cell line IPC-81 has been frequently used in

cytotoxicity assays of ionic liquids, with the reduction of

the WST-1 dye as an indicator of cell viability [7]. In the

present work, we propose new externally predictive quan-

titative structure–toxicity relationship (QSTR) models

based on two- and three-dimensional (2D and 3D) struc-

tural descriptors for the prediction of cytotoxicity of ionic

liquids to leukemia rat cell line IPC-81.

The main goal of this work is to discover the most

important structural parameters affecting the cytotoxicity

of ILs. In addition to good statistical quality, the important

aspect of the proposed models is their development by

taking into account the fundamental points required by the

organization for economic cooperation and development

(OECD) principles [17] for regulatory acceptability of

QSARs. According to these rules, models must be exam-

ined in terms of their validation for predictivity (both by

internal and external statistical validation). Furthermore,

the possibility of verifying the chemical applicability

domain via the leverage approaches of models and, when

possible, the mechanistic interpretation of their descriptors

must be investigated.

Results and discussion

Interpretation of descriptors

In this work, quantitative relationships between the cyto-

toxicity of ionic liquids and their structural descriptors

were investigated by using linear and non-linear models.

Initially, our QSAR modeling effort involved the use of

multiple linear regressions. The calculated logEC50 values

of training and test sets using a linear model are shown in

Table 1. Table 2 gives the specifications of the model

obtained together with the six descriptors that appeared

in the model, which were: heavy atom count (HAC),

Moran autocorrelation–lag 8/weighted by atomic Sander-

son electronegativities (MATS8e), partial charge weighted

topological electronic index (PCWTE), 3D-MoRSE-signal

26/weighted by atomic masses (Mor26m), R matrix aver-

age row sum (RARS), and R maximal autocorrelation of

lag 5/unweighted (R5u?). All these descriptors except

HAC refer to the cationic part of the ionic liquids. HAC is

the heavy atom count in the anions. The negative coeffi-

cient associated with this descriptor in the model indicates

that an increase of the heavy atom count in the anionic

parts leads to a decrease in the logEC50 value. It should be

noted that a low value of effective concentration (EC50)

means high toxicity of the ionic liquid. Therefore, it was

concluded that the more heavy atoms are in the anion

structure the more toxic is the ionic liquid. Five other

descriptors can be divided into four groups: 3D-MoRSE,

2D-autocorrelation, GETAWAY (GEometry, Topology,

and Atom-Weights AssemblY), and electronic molecular

coding descriptors. MATS8e is one of the 2D-autocorre-

lation [18] descriptors. These descriptors correspond to

2D-autocorrelations between pairs of atoms in the mole-

cule, and are defined in order to reflect the contribution of a

considered atomic property to the experimental observa-

tions under investigation (cytotoxicity). The atomic

properties (atomic weights) that can be adopted to differ-

entiate the nature of atoms are the mass, polarizability,

electronegativity, or the volume. These indices can be

readily calculated, i.e. by summing products of the atomic

weights of the terminal atoms of all the paths of a pre-

scribed length. For the case of MATS8e, the path

connecting a pair of atoms has length 8 and involves the

atomic Sanderson electronegativities as weighting scheme
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Table 1 Dataset and corresponding observed, MLR, and MLP NN calculated values of logEC50

Name logEC50

(exp)

logEC50

(MLR)

Residual logEC50

(MLP)

Residual

1 1-(Cyanomethyl)-1-methyl-piperidinium chloride 3.82 4.10 0.28 3.83 0.01

2 1-(3-Hydroxypropyl)-1-methylpiperidinium chloride 3.76 3.73 -0.03 3.76 0.00

3 1-(3-Methoxypropyl)-1-methylpiperidinium chloride 3.72 3.41 -0.31 3.70 -0.02

4a 1-(3-Hydroxypropyl)-1-methylpyrrolidinium chloride 3.56 3.41 -0.14 3.52 -0.04

5 1-Butyl-1-methylpyrrolidinium chloride 3.55 3.41 -0.14 3.56 0.01

6 Ethyl(2-methoxyethyl)-dimethylammonium chloride 3.53 3.53 0.01 3.55 0.02

7 1-(Ethoxymethyl)-1-methylpiperidinium chloride 3.52 3.36 -0.16 3.62 0.10

8 Butylethyldimethylammonium chloride 3.52 3.57 0.05 3.49 -0.03

9b 1-Ethyl-3-methyl-3H-imidazolium hydrogensulfate 3.31 3.31 0.01 3.36 0.06

10 1-Butylpyridinium bromide 3.24 2.93 -0.31 3.12 -0.12

11 1-Butyl-3-methylpyridinium chloride 3.12 2.40 -0.72 3.08 -0.04

12 1-Butyl-1-methylpyrrolidinium bromide 3.11 3.16 0.04 3.10 -0.01

13 1-Ethyl-3-methyl-3H-imidazolium chloride 3.03 3.45 0.43 3.03 0.00

14b 1-Butyl-2-methylpyridinium chloride 3.02 2.51 -0.51 2.95 -0.07

15 1-(Cyanomethyl)pyridinium chloride 2.98 3.61 0.63 2.95 -0.03

16 1-Butylpyridinium tetrafluoroborate 2.95 2.90 -0.05 2.96 0.01

17 1,2,3,4,5-Pentamethylimidazolium iodide 2.91 3.33 0.42 2.87 -0.04

18 1-Butyl-3-methyl-3H-imidazolium iodide 2.90 2.68 -0.22 2.91 0.01

19a 1-Ethyl-3-methyl-3H-imidazolium

bis(trifluoromethylsulfonyl)amide

2.85 2.61 -0.24 2.87 0.01

20 Pyridinium chloride 2.83 2.75 -0.08 2.83 0.00

21 1-Butyl-3-methyl-3H-imidazolium chloride 2.80 2.64 -0.16 2.81 0.01

22 1-methyl-3-propyl-3H-imidazolium tetrafluoroborate 2.78 2.34 -0.44 2.71 -0.07

23 1-Butyl-3-methyl-3H-imidazolium bromide 2.77 2.66 -0.11 2.81 0.04

24b 1-Ethyl-3-methyl-3H-imidazolium tetrafluoroborate 2.73 3.21 0.48 2.62 -0.11

25 1-Butyl-3-methyl-3H-imidazolium-O-methylsulfate 2.61 2.35 -0.26 2.49 -0.12

26 1-Butyl-4-methylpyridinium chloride 2.59 2.39 -0.20 2.57 -0.02

27 1-Butyl-3-methyl-3H-imidazolium tetrafluoroborate 2.47 2.41 -0.06 2.60 0.13

28 1-Hexyl-3-methyl-3H-imidazolium tetrafluoroborate 2.39 1.83 -0.56 2.38 -0.01

29b 1-Benzyl-3-methyl-3H-imidazolium chloride 2.32 2.52 0.20 2.62 0.30

30 1,3-Diethyl-3H-imidazolium bromide 2.31 2.74 0.43 2.37 0.06

31 1-Butyl-3-methyl-3H-imidazolium

bis(trifluoromethylsulfonyl)amide

2.31 2.50 0.20 2.30 -0.01

32 1-Methyl-3-pentyl-3H-imidazolium chloride 2.28 2.48 0.21 2.35 0.07

33 1-Butyl-1-methylpyrrolidinium tetrafluoroborate 2.26 2.59 0.33 2.25 -0.01

34a 1-Hexyl-1-methylpyrrolidinium chloride 2.24 2.31 0.07 3.00 0.76

35 1-Hexyl-3-methyl-3H-imidazolium chloride 2.13 2.05 -0.07 2.13 0.00

36 1-Hexyl-4-methylpyridinium chloride 2.00 1.77 -0.24 2.02 0.02

37 1-Methyl-1-octylpyrrolidinium chloride 1.96 1.46 -0.50 1.95 -0.01

38 1-Heptyl-3-methyl-3H-imidazolium chloride 1.87 1.75 -0.12 1.83 -0.04

39b 1-Methyl-3-octyl-3H-imidazolium chloride 1.38 1.25 -0.13 1.35 -0.03

40 1-Butyl-4-dimethylamino-pyridinium chloride 1.27 1.29 0.01 1.29 0.02

41 1-Methyl-3-octyl-3H-imidazolium tetrafluoroborate 1.04 1.07 0.03 1.04 0.00

42 3-Methyl-1-octylpyridinium chloride 0.85 1.06 0.21 0.86 0.01

43 1-Methyl-3-nonyl-3H-imidazolium chloride 0.79 0.91 0.13 0.80 0.01

44a 1-Butyl-2,3-dimethyl-3H-imidazolium tetrafluoroborate 0.75 1.81 1.06 1.90 1.16

45 4-Dimethylamino-1-hexylpyridinium chloride 0.32 0.75 0.43 0.32 0.00

46 Trihexyltetradecylphosphonium tetrafluoroborate 0.23 0.53 0.29 0.25 0.02
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to distinguish their nature. Considering the negative coef-

ficient of this descriptor in the model, we may conclude

that enhanced values of atomic electronegativities in cat-

ions are favorable for toxic effects of the ILs studied.

RARS and R5u? are two GETAWAY descriptors [19].

Such descriptors have shown great potential as powerful

variables in QSAR modeling of different biological activ-

ities because they encode information about molecular

shape, size, and atom distribution [20]. These kinds of

descriptors try to match 3D-molecular geometry with

chemical information by using different atomic weightings.

R5u? is calculated from R maximal autocorrelation and

RARS is the average row sum of the influence/distance

matrix which is defined in Eq. 1:

RARS ¼ 1

A
�
XA

i¼1

XA

j¼1
1

ffiffiffiffiffiffiffiffiffiffi
hiihjj

p

rij
¼ 1

A
�
XA

i¼1
RSi ð1Þ

where hii and hjj are the leverages of the two considered

atoms, rij is their geometric distance, A is the number of

atoms in the molecule and RSi is the ith row sum. The row

sums of the influence/distance matrix encode some useful

information that could be related to the presence of

significant substituents or fragments in the molecule. The

largest coefficient in the linear model belongs to the RARS

descriptor which probably implies the importance of

cationic substituents and dimension effects on the

cytotoxicity of ILs. The next descriptor is PCWTE, which

is discussed by Osmialowski et al. [21]. PCWTE is defined

by Eq. 2:

PCWTE ¼ 1

Qmin

X
i\j

qi � qj

�� ��
r2

ij

ð2Þ

where qi and qj are the Zefirov partial charges of the

bonded atoms, Qmin is the most negative partial charge, and

rij is the corresponding bond length.

The last descriptor is Mor26m, which is one of

3D-MoRSE type descriptors [22]. These types of descriptors

as molecular transforming illustrate large capability features

for the sign of molecular structures regarding their inde-

pendent size of the molecule. These descriptors allocate the

structural diversity as well as certain allowed alterations that

can be represented in different atomic properties such as

atomic number, mass, partial charge, and polarizability.

Therefore, they can reflect the flexibility in explanation of

the molecules for their biological activities. Mor26m rep-

resents 3D-MoRSE-signal 26/weighted by atomic masses.

The appearance of the 3D-MoRSE signal over the 26th stage

weighted by atomic masses might indicate the above-aver-

age value distribution on the spatial arrangements of

substituents within the molecular environments. In this

work, the importance of the atomic masses, which appeared

in the 26th stage out of 32-dimensional space, might be taken

into account for the ability of the atomic masses information

that should be related to the alterations in the spatial

Table 1 continued

Name logEC50

(exp)

logEC50

(MLR)

Residual logEC50

(MLP)

Residual

47 Benzyldecyldimethylammonium chloride 0.13 0.26 0.12 0.12 -0.01

48 Benzyldodecyldimethylammonium chloride -0.18 -0.04 0.14 -0.15 0.03

49a Benzyldimethyltetradecylammonium chloride -0.27 -0.72 -0.44 0.32 0.59

50 1-Methyl-3-octadecyl-3H-imidazolium chloride -0.42 -0.43 0.01 -0.44 -0.02

a, b The internal and external test sets, respectively

Table 2 Details of the constructed GA-MLR model

Descriptor name Notation Coefficient Standard error t value p value

Heavy atom count HAC -0.06 ±0.020 –2.954 0.006

Moran autocorrelation-lag 8/weighted by atomic

Sanderson electronegativities

MATS8e -1.161 ±0.452 -2.572 0.015

Partial charge weighted topological electronic index PCETE -0.049 ±0.010 -4.953 0.000

3D-MoRSE- signal 26/weighted by atomic masses Mor26m 2.685 ±0.593 4.529 0.000

R matrix average row sum RARS 9.984 ±0.979 10.199 0.000

R maximal autocorrelation of lag 5/unweighted R5u? -2.173 ±1.095 -1.984 0.056

Constant – -3.02 ±0.713 -4.238 0.000

n = 40 R2 = 0.935 F = 79.2 SE = 0.32 R2
CV = 0.87
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arrangements of the substitution patterns within the electron

diffraction properties. The electron distribution regarding

the atomic masses of substituents might then be a factor in

influencing the cytotoxic ability of the studied ILs. The

appearance of these descriptors in the model indicates that

atomic masses, electronic properties, and the cation sub-

stituents are important structural characteristics which affect

the cytotoxicity of ILs. It was demonstrated in this work that

cytotoxicity of ILs is closely related to their chemical

structure, especially to the special fragments on the cation

skeleton. All the above-mentioned parameters could be used

for future QSTR investigations about toxicity of ionic

liquids.

Nonlinear model

As has been mentioned, the nonlinear model for cytotox-

icity estimation of ILs was established by Levenberg–

Marquardt multilayer perceptron neural network (MLP

NN) analysis on the basis of descriptors selected by a

genetic algorithm multiple linear regression (GA-MLR)

approach. An improved nonlinear model was developed to

predict the logEC50 values of the 50 ionic liquids in

training, internal, and external test sets. Figure 1 represents

the plot of experimental versus calculated logEC50 val-

ues using the MLP NN model. Inspection of this figure

indicates good correlation between experimental and cal-

culated cytotoxicity values.

The correlation coefficients (R2) between experimental

and calculated cytotoxicity values by this model for

training, internal, and external test sets were 0.998, 0.954

and 0.917, respectively. The other statistics of the devel-

oped MLP NN model were an average error (AE) of

-0.0005 and average absolute error (AAE) of 0.0295 for

the training set, AE = 0.0303 and AAE = 0.1126 for the

internal test set, and AE = 0.4951 and AAE = 0.5101 for

the external test set. The main parameters of both linear

and nonlinear models are represented in Table 3.

Evidently, these results show improvement of the sta-

tistical parameters for the MLP NN model over the linear

model, which confirms the nonlinear relationship between

structural information and cytotoxicity of ionic liquids. To

determine the order of importance of descriptors in the

MLP NN model, a sensitivity analysis was performed.

According to this method, the differences between the root-

mean-square error (RMSE) of the complete network’s

prediction and the RMSE were obtained when the ith

variable is excluded from the trained network (RMSEi),

and were shown as Rmdiffi (Eq. 3).

Rmdiff i ¼ RMSEi � RMSE ð3Þ

It is obvious that the most important variable is the one

that leads to the highest value of Rmdiffi. The values of

Rmdiffi for the MLP NN model were calculated and

plotted in Fig. 2.

As it can be seen in this figure, the order of importance

of selected molecular descriptors is RARS [ MATS8e [
R5U? [ Mor26m [ PCWTE [ HAC. According to the

sensitivity analysis results, among these six descriptors the

MLP NN model has the least sensitivity to the HAC
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Table 3 Comparative results of linear and nonlinear models

Model training set Test set

R2 RMSE R2 RMSE

GA-MLR 0.935 0.291 0.862 0.441

MLP NN 0.998 0.045 0.954a 0.148a

– – 0.917b 0.672b

a, b The internal and external test sets, respectively
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descriptor. This is in agreement with the results of toxi-

cological researches about a lesser contribution of anionic

parts of studied ILs to their toxicities [23]. This result can

serve as a theoretical and rational support for the experi-

mental researches about toxicity of ionic liquids.

Model validation

In spite of good accuracy and apparent mechanistic appeal,

QSAR models should pass rigorous validation tests to be

useful as reliable screening tools. The Y-randomization test

is a tool used in validation of QSAR models, whereby the

performance of the original model in data description is

compared to that of models built for permuted (randomly

shuffled) response, based on the original descriptor pool and

the original model building procedure. The Y-scrambling

procedure [24] was performed to ensure that there is not any

chance correlation in the data matrix. The mean value of R2

after 30 times y-scrambling was 0.236, which disapproved

the chance correlation probability. The real usefulness of

QSTR models is not just their ability to reproduce known

data, verified by their fitting power (R2), but is mainly their

possibility of predictive application. For this reason, internal

validation, leave one out cross-validation (LOO), was

applied on the MLR model which resulted in square cross-

validated correlation coefficient R2
CV

� �
of 0.87 and

RMSE = 0.291, which confirmed good predictive ability of

this model. For a QSTR model, internal validation, although

important and necessary, does not sufficiently guarantee the

predictive ability of a model. Therefore, external validation

on a representative number of chemicals must always sup-

plement the internal validation, which will avoid an

overoptimistic proposal. This was done through statistical

validation of a separate external test set, which was not

included in the model development procedure. The results of

external validation for both MLR and MLP NN models

(which are shown in Table 3) were acceptable and revealed

reliability of both models.

Applicability domain

It needs to be emphasized that, no matter how robust,

significant, and validated a QSTR model may be, it cannot

be expected to reliably predict the modeled activity for the

entire universe of chemicals. Therefore, before a QSTR

model is put into use for screening chemicals, its domain of

application (AD) must be defined [24]. A simple measure

of a chemical being too far from the applicability domain

of the model is its leverage hi, which is defined as:

hi ¼ xT
i XTX
� ��1

xi i ¼ 1; . . .; nð Þ ð4Þ

where xi is the descriptor row-vector of the query com-

pound and X is the n 9 k - 1 matrix of k model descriptor

values for n training set compounds. The superscript T

refers to the transpose of the matrix/vector. The warning

leverage h* is, generally, fixed at 3k/n, where k is the

number of model parameters plus one and n is the number

of training compounds.

To visualize the applicability domain of the GA-MLR

and the MLP NN models, the standardized residuals

versus leverage (Hat diagonal) values (William plot) were

plotted for an immediate and simple graphical detection

of both the response outliers (i.e., compounds with stan-

dardized residuals greater than three standard deviation

units, [3r) and structurally influential chemicals in the

model (h [ h*). Figures 3 and 4 show the results for the

AD analysis of the QSTR models, which were deter-

mined by training instances with h values lower than

h* = 0.525.

As can be seen from these figures, all predictions were

reliable for MLP NN and linear models and there is no

response outlier compound for either training or predic-

tion sets, which further indicated the reliability of the
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predictions from another aspect. Comparison of the Wil-

liam plot of both proposed models reveals the similarity of

chemical applicability domain of both developed models.

Moreover, it can be seen that the only chemical influential

on the structural domain of both models is number 46.

The anomalous behavior of this chemical could be due to

the following: (1) incorrect experimental input data, (2) the

descriptors selected do not capture some relevant structural

features present in this molecule and absent in the others,

and (3) its biological mechanism is different from the

remaining chemicals. Considering the cationic structure of

compound number 46, it could be interpreted that reasons

(2) and (3) might be reasonable for this compound. For

future predictions, predicted cytotoxicity data must be

considered reliable only for those chemicals that fall within

the applicability domain on which the model was con-

structed. New samples with an h value higher than h* and/

or a value of standardized residual higher than ?2.77 or

lower than -2.77 (horizontal dashed lines in Fig. 3) are out

of the AD bandwidth of the model and consequently cannot

be reliably predicted. Conversely, when the leverage value

of a compound is lower than the critical value, the proba-

bility of accordance between predicted and actual values is

as high as that for the training set chemicals.

Concluding remarks

In this paper, linear and nonlinear QSAR models for

cytotoxicity estimation of ionic liquids with high accuracy

are presented based on their 2D and 3D structural

descriptors. The nonlinear model produces better results

than the linear model and comprises good predictability.

Although the MLP NN model appears statistically more

reliable than the GA-MLR model, it needs complex cal-

culations. However, the linear model is simple, transparent,

and general with a moderate external predictivity (standard

error of 0.48). Therefore, except for conditions where high

accuracy is required, the linear model is preferred. There

are some other important points are listed. First, the pro-

posed models in this work could identify and provide some

insight into structural features which are related to the

cytotoxicity of ILs. It was confirmed that structural features

of anionic parts in the studied ILs have less effects on the

cytotoxicity of these chemicals compared to cations. This

result helps to get more useful information about exploring

or synthesis of new ionic liquids. Second, the nonlinear

relationship can describe accurately the relationship

between the structural parameters and the cytotoxicities of

the studied ILs. Third, GA-optimization is a good choice

for reduction of descriptor numbers and elimination of

nonrelevant descriptors and helps to statistically improve

the model.

Methodology

Dataset

The structures of a diverse set of 50 ionic liquids as well as

their corresponding cytotoxicity against leukemia rat cell

line were taken from UFT/Merck ionic liquids biological

effects database (Centre for Environmental Research and

Sustainable Technology) [25]. The biological endpoint

doses (EC50 in mg/dm3) were transformed to the form of

the logarithm of half-maximal effective concentration

(logEC50). The IUPAC names of ionic liquids as well as

the calculated and experimental cytotoxicity values are

shown in Table 1.

The maximum value of logEC50 was 3.82 for

1-(cyanomethyl)-1-methylpiperidinium chloride and the

minimum value was -0.42 for 1-methyl-3-octadecyl-1H-

imidazolium chloride. Compounds in the dataset were sorted

according to their cytotoxicity values and then on the basis of

desired distances from each other. The dataset was divided

into training, internal, and external test sets, including 40, 5,

and 5, members (y-ranking procedure), respectively. For

nonlinear modeling, the training set was used to adjust the

model parameters, the internal test set was used to prevent

the model from overfitting, and the external test set was used

to evaluate the prediction power of developed model. In the

case of MLR modeling, internal and external test sets were

considered as the test set.

Structural descriptors

To obtain a QSTR model, compounds are represented by

theoretical molecular descriptors. In order to compute the

structural descriptors, the structures of all cations were

drawn using ChemSketch software (v.12) [26], and were

optimized by means of the molecular mechanics (MM?)

force field of the HyperChem program (v.7) [27]. The final

geometries of the minimum energy conformation were

obtained by more precise optimization with the AM1

parameterization method by the MOPAC 6.0 package [28].

After geometry optimization, Hyperchem output files were

used by the Dragon program [29] as input to calculate

descriptors. Furthermore, the program CODESSA [30] was

used to compute some additional constitutional, topologi-

cal, electrostatic, and semi-empirical descriptors. Several

descriptors (such as molecular weight, H-bond acceptor,

topological polar surface area, heavy atom count, formal

charge, etc.) were also considered to characterize the

contribution of the anionic part of ILs. In order to reduce

redundant and non-useful information, prescreening of

descriptors was carried out in the following way: first,

constant or near constant descriptors were eliminated, and

then among those descriptors whose intercorrelations
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exceeded 0.9, the most suitable and interpretable ones were

kept while the others were deleted. The remaining 305

descriptors were entered to feature the screening step.

Variable selection

Variable selection is always one of the most important

steps in developing a QSTR model, which is especially

important when one is required to deal with a large or even

overwhelming variable set. It is well known in both

chemical and statistical fields that the accuracy of classi-

fication and regression techniques is not monotonic with

respect to the number of features employed by the model.

Therefore, depending on the nature of the regression

technique, the presence of irrelevant or redundant features

can cause the system to focus attention on the idiosyncra-

sies of the individual samples and lose sight of the broad

picture that is essential for generalization beyond the

training set.

Recently, two publications suggested that genetic algo-

rithms (GA) might be useful in data analysis, especially in

the task of reducing the number of features for regression

models [31, 32]. A genetic algorithm is a powerful opti-

mization method to search for the global optima of

solutions. This algorithm is developed to mimic some

processes observed in natural evolution. A detailed

description of GA can be found in [33]. In the present

work, a genetic algorithm along with the stepwise multiple

linear regression (stepwise MLR) was applied to determine

an optimal subset of variables. It is proper to mention that

in this study the genetic algorithm is used as an optimi-

zation method to reduce the number of descriptors before

application of stepwise MLR. The standard Holland

genetic algorithm with elitism and roulette selection was

performed using the STATISTICA (Release 7) software

[34]. At the end of the GA process, 305 structural

descriptors were reduced to the 58 relevant descriptors. In

the next step of variable selection, stepwise MLR was

applied on the remaining descriptors. In this step, to avoid

overcorrelation of the regression equation, the variation of

squared correlation coefficient (R2) and standard error of

estimate (SE) in equations by the addition of relevant

descriptors to the model were monitored. As shown in

Fig. 5, after the addition of six descriptors to the model no

significant improvement in the developed model was

observed. Therefore, the six parameter equation was

selected as the best GA-MLR model.

In order to investigate how efficient GA-MLR is over

stepwise MLR, a variable selection procedure was per-

formed separately using just the stepwise multiple linear

regression method on the 305 initial descriptors. This

investigation resulted in a model which did not possess

acceptable statistical parameters and was not practical.

Details of the developed GA-MLR model are shown in

Table 2. As can be seen, good overall quality of the model

in significant terms is in fact indicated by the large F and

small p values.

Nonlinear modeling

Artificial neural networks (ANNs) are biologically inspired

computer programs designed to simulate the way in which

the human brain processes information [35]. An ANN is

formed from hundreds of single units, artificial neurons

or processing elements (PE), connected by coefficients

(weights), which constitute the neural structure and is

organized in layers. The ability of ANNs to accurately

model nonlinear relationships of input–output pairs of data

is well established. In this work, in order to check any

nonlinear relationships between structural descriptors and

cytotoxicity values, the multilayer perceptron neural net-

work (MLP) [36] was applied using STATISTICA

software. A multilayer perceptron is a feed-forward artifi-

cial neural network model that maps sets of input data onto

a set of appropriate output. It consists of multiple layers of

nodes in a directed graph, which is fully connected from

one layer to the next. Except for the input nodes, each node

is a neuron with a nonlinear activation function.

Descriptors which were selected by the GA-MLR pro-

cedure were used as inputs of the network. The Levenberg–

Marquardt (LM) algorithm [37] is one of the most efficient

learning algorithms for neural networks. The advantages of

using the LM algorithm are that specifying rate or momen-

tum is not necessary and training processes are much more

rapid. Therefore, in this study, the LM algorithm was used to

develop a nonlinear model. To obtain better results, the

parameters that influence the performance of the MLP

NN were optimized. The optimized architecture of MLP
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Fig. 5 Variation of R2 and SE versus number of descriptors in the

linear model
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network was obtained as 6:6:1, which is shown in Fig. 6.

The optimized and trained network was used to calculate the

logEC50 values of training, internal, and external test sets,

which are shown in Table 1.
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